Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107163, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484799

RESUMO

The use of variable domain of the heavy-chain of the heavy-chain-only antibodies (VHHs) as disease-modifying biomolecules in neurodegenerative disorders holds promises, including targeting of aggregation-sensitive proteins. Exploitation of their clinical values depends however on the capacity to deliver VHHs with optimal physico-chemical properties for their specific context of use. We described previously a VHH with high therapeutic potential in a family of neurodegenerative diseases called tauopathies. The activity of this promising parent VHH named Z70 relies on its binding within the central region of the tau protein. Accordingly, we carried out random mutagenesis followed by yeast two-hybrid screening to obtain optimized variants. The VHHs selected from this initial screen targeted the same epitope as VHH Z70 as shown using NMR spectroscopy and had indeed improved binding affinities according to dissociation constant values obtained by surface plasmon resonance spectroscopy. The improved affinities can be partially rationalized based on three-dimensional structures and NMR data of three complexes consisting of an optimized VHH and a peptide containing the tau epitope. Interestingly, the ability of the VHH variants to inhibit tau aggregation and seeding could not be predicted from their affinity alone. We indeed showed that the in vitro and in cellulo VHH stabilities are other limiting key factors to their efficacy. Our results demonstrate that only a complete pipeline of experiments, here described, permits a rational selection of optimized VHH variants, resulting in the selection of VHH variants with higher affinities and/or acting against tau seeding in cell models.


Assuntos
Anticorpos de Domínio Único , Proteínas tau , Proteínas tau/imunologia , Proteínas tau/metabolismo , Proteínas tau/química , Proteínas tau/genética , Humanos , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/imunologia , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Epitopos/química , Epitopos/imunologia , Peptídeos/química , Peptídeos/imunologia
2.
ACS Biomater Sci Eng ; 10(3): 1856-1868, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38385618

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease and the most frequent cause of dementia. It is characterized by the accumulation in the brain of two pathological protein aggregates: amyloid-ß peptides (Aß) and abnormally phosphorylated tau. The progressive cognitive decline observed in patients strongly correlates with the synaptic loss. Many lines of evidence suggest that soluble forms of Aß accumulate into the brain where they cause synapse degeneration. Stopping their spreading and/or targeting the pathophysiological mechanisms leading to synaptic loss would logically be beneficial for the patients. However, we are still far from understanding these processes. Our objective was therefore to develop a versatile model to assay and study Aß-induced synaptotoxicity. We integrated a microfluidic device that physically isolates synapses from presynaptic and postsynaptic neurons with a microelectrode array. We seeded mouse primary cortical cells in the presynaptic and postsynaptic chambers. After functional synapses have formed in the synaptic chamber, we exposed them to concentrated conditioned media from cell lines overexpressing the wild-type or mutated amyloid precursor protein and thus secreting different levels of Aß. We recorded the neuronal activity before and after exposition to Aß and quantified Aß's effects on the connectivity between presynaptic and postsynaptic neurons. We observed that the application of Aß on the synapses for 48 h strongly decreased the interchamber connectivity without significantly affecting the neuronal activity in the presynaptic or postsynaptic chambers. Thus, through this model, we are able to functionally assay the impact of Aß peptides (or other molecules) on synaptic connectivity and to use the latter as a proxy to study Aß-induced synaptotoxicity. Moreover, since the presynaptic, postsynaptic, and synaptic chambers can be individually targeted, our assay provides a powerful tool to evaluate the involvement of candidate genes in synaptic vulnerability and/or test therapeutic strategies for AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Animais , Humanos , Microeletrodos , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Dispositivos Lab-On-A-Chip
3.
Cells ; 12(7)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048058

RESUMO

Tauopathies are neurodegenerative disorders involving the accumulation of tau isoforms in cell subpopulations such as astrocytes. The origins of the 3R and 4R isoforms of tau that accumulate in astrocytes remain unclear. Extracellular vesicles (EVs) were isolated from primary neurons overexpressing 1N3R or 1N4R tau or from human brain extracts (progressive supranuclear palsy or Pick disease patients or controls) and characterized (electron microscopy, nanoparticle tracking analysis (NTA), proteomics). After the isolated EVs were added to primary astrocytes or human iPSC-derived astrocytes, tau transfer and mitochondrial system function were evaluated (ELISA, immunofluorescence, MitoTracker staining). We demonstrated that neurons in which 3R or 4R tau accumulated had the capacity to transfer tau to astrocytes and that EVs were essential for the propagation of both isoforms of tau. Treatment with tau-containing EVs disrupted the astrocytic mitochondrial system, altering mitochondrial morphology, dynamics, and redox state. Although similar levels of 3R and 4R tau were transferred, 3R tau-containing EVs were significantly more damaging to astrocytes than 4R tau-containing EVs. Moreover, EVs isolated from the brain fluid of patients with different tauopathies affected mitochondrial function in astrocytes derived from human iPSCs. Our data indicate that tau pathology spreads to surrounding astrocytes via EVs-mediated transfer and modifies their function.


Assuntos
Tauopatias , Proteínas tau , Humanos , Proteínas tau/metabolismo , Astrócitos/metabolismo , Tauopatias/patologia , Encéfalo/metabolismo , Isoformas de Proteínas/metabolismo
4.
Prog Neurobiol ; 223: 102386, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36481386

RESUMO

Multiple lines of evidence have linked oxidative stress, tau pathology and neuronal cell cycle re-activation to Alzheimer's disease (AD). While a prevailing idea is that oxidative stress-induced neuronal cell cycle reactivation acts as an upstream trigger for pathological tau phosphorylation, others have identified tau as an inducer of cell cycle abnormalities in both mitotic and postmitotic conditions. In addition, nuclear hypophosphorylated tau has been identified as a key player in the DNA damage response to oxidative stress. Whether and to what extent these observations are causally linked remains unclear. Using immunofluorescence, fluorescence-activated nucleus sorting and single-nucleus sequencing, we report an oxidative stress-associated accumulation of nuclear hypophosphorylated tau in a subpopulation of cycling neurons confined in S phase in AD brains, near amyloid plaques. Tau downregulation in murine neurons revealed an essential role for tau to promote cell cycle progression to S phase and prevent apoptosis in response to oxidative stress. Our results suggest that tau holds oxidative stress-associated cycling neurons in S phase to escape cell death. Together, this study proposes a tau-dependent protective effect of neuronal cell cycle reactivation in AD brains and challenges the current view that the neuronal cell cycle is an early mediator of tau pathology.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Fase S , Fosforilação , Estresse Oxidativo , Neurônios/metabolismo , Peptídeos beta-Amiloides/metabolismo
5.
Nat Biomed Eng ; 6(2): 207-220, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145256

RESUMO

Myotonic dystrophy type 1 (DM1) is an RNA-dominant disease whose pathogenesis stems from the functional loss of muscleblind-like RNA-binding proteins (RBPs), which causes the formation of alternative-splicing defects. The loss of functional muscleblind-like protein 1 (MBNL1) results from its nuclear sequestration by mutant transcripts containing pathogenic expanded CUG repeats (CUGexp). Here we show that an RBP engineered to act as a decoy for CUGexp reverses the toxicity of the mutant transcripts. In vitro, the binding of the RBP decoy to CUGexp in immortalized muscle cells derived from a patient with DM1 released sequestered endogenous MBNL1 from nuclear RNA foci, restored MBNL1 activity, and corrected the transcriptomic signature of DM1. In mice with DM1, the local or systemic delivery of the RBP decoy via an adeno-associated virus into the animals' skeletal muscle led to the long-lasting correction of the splicing defects and to ameliorated disease pathology. Our findings support the development of decoy RBPs with high binding affinities for expanded RNA repeats as a therapeutic strategy for myotonic dystrophies.


Assuntos
Distrofia Miotônica , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Humanos , Camundongos , Músculo Esquelético/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/terapia , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
Mol Ther ; 30(4): 1484-1499, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35007758

RESUMO

Tau proteins aggregate into filaments in brain cells in Alzheimer's disease and related disorders referred to as tauopathies. Here, we used fragments of camelid heavy-chain-only antibodies (VHHs or single domain antibody fragments) targeting Tau as immuno-modulators of its pathologic seeding. A VHH issued from the screen against Tau of a synthetic phage-display library of humanized VHHs was selected for its capacity to bind Tau microtubule-binding domain, composing the core of Tau fibrils. This parent VHH was optimized to improve its biochemical properties and to act in the intra-cellular compartment, resulting in VHH Z70. VHH Z70 precisely binds the PHF6 sequence, known for its nucleation capacity, as shown by the crystal structure of the complex. VHH Z70 was more efficient than the parent VHH to inhibit in vitro Tau aggregation in heparin-induced assays. Expression of VHH Z70 in a cellular model of Tau seeding also decreased the aggregation-reporting fluorescence signal. Finally, intra-cellular expression of VHH Z70 in the brain of an established tauopathy mouse seeding model demonstrated its capacity to mitigate accumulation of pathological Tau. VHH Z70, by targeting Tau inside brain neurons, where most of the pathological Tau resides, provides an immunological tool to target the intra-cellular compartment in tauopathies.


Assuntos
Doença de Alzheimer , Anticorpos de Domínio Único , Tauopatias , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Neurônios/metabolismo , Proteínas Repressoras , Tauopatias/metabolismo , Proteínas tau/genética
7.
Mol Ther ; 30(2): 782-797, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34563677

RESUMO

Tauopathies are neurodegenerative diseases characterized by tau inclusions in brain cells. Seed-competent tau species have been suggested to spread from cell to cell in a stereotypical manner, indicating that this may involve a prion-like mechanism. Although the intercellular mechanisms of transfer are unclear, extracellular vesicles (EVs) could be potential shuttles. We assessed this in humans by preparing vesicles from fluids (brain-derived enriched EVs [BD-EVs]). These latter were isolated from different brain regions in various tauopathies, and their seeding potential was assessed in vitro and in vivo. We observed considerable heterogeneity among tauopathies and brain regions. The most striking evidence was coming mainly from Alzheimer's disease where the BD-EVs clearly contain pathological species that can induce tau lesions in vivo. The results support the hypothesis that BD-EVs participate in the prion-like propagation of tau pathology among tauopathies, and there may be implications for diagnostic and therapeutic strategies.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Tauopatias , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética , Proteínas tau/metabolismo
8.
Nat Neurosci ; 23(12): 1567-1579, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33169029

RESUMO

Alzheimer's disease (AD) is characterized by the accumulation of the tau protein in neurons, neurodegeneration and memory loss. However, the role of non-neuronal cells in this chain of events remains unclear. In the present study, we found accumulation of tau in hilar astrocytes of the dentate gyrus of individuals with AD. In mice, the overexpression of 3R tau specifically in hilar astrocytes of the dentate gyrus altered mitochondrial dynamics and function. In turn, these changes led to a reduction of adult neurogenesis, parvalbumin-expressing neurons, inhibitory synapses and hilar gamma oscillations, which were accompanied by impaired spatial memory performances. Together, these results indicate that the loss of tau homeostasis in hilar astrocytes of the dentate gyrus is sufficient to induce AD-like symptoms, through the impairment of the neuronal network. These results are important for our understanding of disease mechanisms and underline the crucial role of astrocytes in hippocampal function.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Astrócitos/metabolismo , Giro Denteado/metabolismo , Transtornos da Memória/metabolismo , Transtornos da Memória/psicologia , Proteínas tau/metabolismo , Doença de Alzheimer/complicações , Animais , Animais Geneticamente Modificados , Feminino , Humanos , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/metabolismo , Neurogênese , Parvalbuminas/metabolismo , Gravidez , Desempenho Psicomotor , Ratos , Memória Espacial , Sinapses/fisiologia
9.
J Nanobiotechnology ; 17(1): 119, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801555

RESUMO

The functional preservation of the central nervous system (CNS) is based on the neuronal plasticity and survival. In this context, the neuroinflammatory state plays a key role and involves the microglial cells, the CNS-resident macrophages. In order to better understand the microglial contribution to the neuroprotection, microglia-derived extracellular vesicles (EVs) were isolated and molecularly characterized to be then studied in neurite outgrowth assays. The EVs, mainly composed of exosomes and microparticles, are an important cell-to-cell communication process as they exhibit different types of mediators (proteins, lipids, nucleic acids) to recipient cells. The medicinal leech CNS was initially used as an interesting model of microglia/neuron crosstalk due to their easy collection for primary cultures. After the microglia-derived EV isolation following successive methods, we developed their large-scale and non-targeted proteomic analysis to (i) detect as many EV protein markers as possible, (ii) better understand the biologically active proteins in EVs and (iii) evaluate the resulting protein signatures in EV-activated neurons. The EV functional properties were also evaluated in neurite outgrowth assays on rat primary neurons and the RNAseq analysis of the microglia-derived EVs was performed to propose the most representative miRNAs in microglia-derived EVs. This strategy allowed validating the EV isolation, identify major biological pathways in EVs and corroborate the regenerative process in EV-activated neurons. In parallel, six different miRNAs were originally identified in microglia-derived EVs including 3 which were only known in plants until now. The analysis of the neuronal proteins under the microglial EV activation suggested possible miRNA-dependent regulation mechanisms. Taken together, this combination of methodologies showed the leech microglial EVs as neuroprotective cargos across species and contributed to propose original EV-associated miRNAs whose functions will have to be evaluated in the EV-dependent dialog between microglia and neurons.


Assuntos
Vesículas Extracelulares/genética , MicroRNAs/genética , Microglia/citologia , Animais , Fracionamento Celular , Células Cultivadas , Cromatografia em Gel , Sanguessugas/citologia , Sanguessugas/genética , Microglia/metabolismo , Neuroproteção , Ratos , Ratos Wistar , Transcriptoma , Ultracentrifugação
10.
Cell Death Dis ; 10(3): 221, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833547

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by synaptic loss that leads to the development of cognitive deficits. Synapses are neuronal structures that play a crucial role in memory formation and are known to consume most of the energy used in the brain. Interestingly, AMP-activated protein kinase (AMPK), the main intracellular energy sensor, is hyper-activated in degenerating neurons in several neurodegenerative diseases, including AD. In this context, we asked whether AMPK hyper-activation could influence synapses' integrity and function. AMPK hyper-activation in differentiated primary neurons led to a time-dependent decrease in pre- and post-synaptic markers, which was accompanied by a reduction in synapses number and a loss of neuronal networks functionality. The loss of post-synaptic proteins was mediated by an AMPK-regulated autophagy-dependent pathway. Finally, this process was also observed in vivo, where AMPK hyper-activation primed synaptic loss. Overall, our data demonstrate that during energetic stress condition, AMPK might play a fundamental role in the maintenance of synaptic integrity, at least in part through the regulation of autophagy. Thus, AMPK might represent a potential link between energetic failure and synaptic integrity in neurodegenerative conditions such as AD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Rede Nervosa/patologia , Sinapses/patologia , Doença de Alzheimer/patologia , Animais , Ativação Enzimática , Masculino , Camundongos Endogâmicos C57BL
11.
Acta Neuropathol Commun ; 6(1): 132, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30497516

RESUMO

Tauopathies are a heterogeneous group of pathologies characterized by tau aggregation inside neurons. Most of them are sporadic but certain tauopathies rely on tau gene (MAPT) mutations. They particularly differ from one to another by their different neuropathological signatures e.g. lesion shapes, regions affected and molecular composition of aggregates. Six isoforms of tau exist, but they do not all co-aggregate in each tauopathy but rather have a unique signature for each one. In some tauopathies such as Alzheimer's disease (AD), tau protein aggregation follows stereotypical anatomical stages. Recent data suggest that this progression is due to an active process of tau protein propagation from neuron-to-neuron. We wondered how tau isoforms or mutations could influence the process of tau aggregation and tau propagation. In human neuropathological material, we found that MAPT mutations induce a faster misfolding compared to tau found in sporadic AD patients. In the rat brain, we observed cell-to-cell transfer of non-pathological tau species irrespective of the tested isoform or presence of a mutation. By contrast, we found that the species of tau impact the propagation of tau pathology markers such as hyperphosphorylation and misfolding. Indeed, misfolding and hyperphosphorylated tau proteins do not spread at the same rate when tau is mutated, or the isoform composition is modified. These results clearly argue for the existence of specific folding properties of tau depending on isoforms or mutations impacting the behavior of pathological tau species.


Assuntos
Deficiências na Proteostase/complicações , Tauopatias , Proteínas tau/genética , Proteínas tau/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Injeções Intraventriculares , Masculino , Pessoa de Meia-Idade , Mutação/genética , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Wistar , Índice de Gravidade de Doença , Tauopatias/etiologia , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia
12.
iScience ; 9: 1-13, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30368077

RESUMO

Although the brain accounts for only 2% of the total body mass, it consumes the most energy. Neuronal metabolism is tightly controlled, but it remains poorly understood how neurons meet their energy demands to sustain synaptic transmission. Here we provide evidence that AMP-activated protein kinase (AMPK) is pivotal to sustain neuronal energy levels upon synaptic activation by adapting the rate of glycolysis and mitochondrial respiration. Furthermore, this metabolic plasticity is required for the expression of immediate-early genes, synaptic plasticity, and memory formation. Important in this context, in neurodegenerative disorders such as Alzheimer disease, dysregulation of AMPK impairs the metabolic response to synaptic activation and processes that are central to neuronal plasticity. Altogether, our data provide proof of concept that AMPK is an essential player in the regulation of neuroenergetic metabolic plasticity induced in response to synaptic activation and that its deregulation might lead to cognitive impairments.

13.
Acta Neuropathol Commun ; 4(1): 117, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27809932

RESUMO

A given cell makes exchanges with its neighbors through a variety of means ranging from diffusible factors to vesicles. Cells use also tunneling nanotubes (TNTs), filamentous-actin-containing membranous structures that bridge and connect cells. First described in immune cells, TNTs facilitate HIV-1 transfer and are found in various cell types, including neurons. We show that the microtubule-associated protein Tau, a key player in Alzheimer's disease, is a bona fide constituent of TNTs. This is important because Tau appears beside filamentous actin and myosin 10 as a specific marker of these fine protrusions of membranes and cytosol that are difficult to visualize. Furthermore, we observed that exogenous Tau species increase the number of TNTs established between primary neurons, thereby facilitating the intercellular transfer of Tau fibrils. In conclusion, Tau may contribute to the formation and function of the highly dynamic TNTs that may be involved in the prion-like propagation of Tau assemblies.


Assuntos
Comunicação Celular , Neurônios/metabolismo , Neurônios/ultraestrutura , Proteínas tau/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Córtex Cerebral/metabolismo , Córtex Cerebral/ultraestrutura , Espaço Extracelular/metabolismo , Vetores Genéticos , Humanos , Lentivirus/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Miosinas/metabolismo , Ratos Wistar , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas tau/genética
14.
Sci Rep ; 6: 33047, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27605042

RESUMO

Pericentromeric heterochromatin (PCH) gives rise to highly dense chromatin sub-structures rich in the epigenetic mark corresponding to the trimethylated form of lysine 9 of histone H3 (H3K9me3) and in heterochromatin protein 1α (HP1α), which regulate genome expression and stability. We demonstrate that Tau, a protein involved in a number of neurodegenerative diseases including Alzheimer's disease (AD), binds to and localizes within or next to neuronal PCH in primary neuronal cultures from wild-type mice. Concomitantly, we show that the clustered distribution of H3K9me3 and HP1α, two hallmarks of PCH, is disrupted in neurons from Tau-deficient mice (KOTau). Such altered distribution of H3K9me3 that could be rescued by overexpressing nuclear Tau protein was also observed in neurons from AD brains. Moreover, the expression of PCH non-coding RNAs, involved in PCH organization, was disrupted in KOTau neurons that displayed an abnormal accumulation of stress-induced PCH DNA breaks. Altogether, our results demonstrate a new physiological function of Tau in directly regulating neuronal PCH integrity that appears disrupted in AD neurons.


Assuntos
Centrômero/genética , Reparo do DNA/genética , Heterocromatina/genética , Neurônios/metabolismo , Transcrição Gênica/genética , Proteínas tau/genética , Animais , Encéfalo/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Quebras de DNA , Epigênese Genética/genética , Histonas/genética , Humanos , Lisina/genética , Camundongos , Camundongos Knockout
15.
Sci Rep ; 6: 30405, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27465291

RESUMO

Metastatic cancer relapses following the reactivation of dormant, disseminated tumour cells; however, the cells and factors involved in this reactivation are just beginning to be identified. Using an immunotherapy-based syngeneic model of melanoma dormancy and GFP-labelled dormant cell-derived cell lines, we determined that vaccination against melanoma prevented tumour growth but did not prevent tumour cell dissemination or eliminate all tumour cells. The persistent disseminated melanoma tumour cells were quiescent and asymptomatic for one year. The quiescence/activation of these cells in vitro and the dormancy of melanoma in vivo appeared to be regulated by glucocorticoid-induced leucine zipper (GILZ)-mediated immunosuppression. GILZ expression was low in dormant cell-derived cultures, and re-expression of GILZ inactivated FOXO3A and its downstream target, p21CIP1. The ability of dormancy-competent cells to re-enter the cell cycle increased after a second round of cellular dormancy in vivo in association with shortened tumour dormancy period and faster and more aggressive melanoma relapse. Our data indicate that future cancer treatments should be adjusted according to the stage of disease progression.


Assuntos
Proteína Forkhead Box O3/genética , Melanoma/genética , Células-Tronco Neoplásicas/metabolismo , Fase de Repouso do Ciclo Celular/genética , Fatores de Transcrição/genética , Animais , Biomarcadores Tumorais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Humanos , Melanoma/imunologia , Melanoma/mortalidade , Melanoma/patologia , Melanoma Experimental , Camundongos , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia , Prognóstico , Transdução de Sinais
16.
Cell Commun Signal ; 12: 52, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25223735

RESUMO

BACKGROUND: It is well established that inflammation promotes cancer, including melanoma, although the exact mechanisms involved are less known. In this study, we tested the hypothesis that inflammatory factors affect the cancer stem cell (CSC) compartment responsible for tumor development and relapse. RESULTS: Using an inducible histone 2B-GFP fusion protein as a tracer of cell divisional history, we determined that tumor necrosis factor (TNF), which is a classical pro-inflammatory cytokine, enlarged the CSC pool of GFP-positive label-retaining cells (LRCs) in tumor-like melanospheres. Although these cells acquired melanoma stem cell markers, including ABCB5 and CD271, and self-renewal ability, they lost their capacity to differentiate, as evidenced by the diminished MelanA expression in melanosphere cells and the loss of pigmentation in a skin equivalent model of human melanoma. The undifferentiated cell phenotype could be reversed by LY294002, which is an inhibitor of the PI3K/AKT signaling pathway, and this reversal was accompanied by a significant reduction in CSC phenotypic markers and functional properties. Importantly, the changes induced by a transient exposure to TNF were long-lasting and observed for many generations after TNF withdrawal. CONCLUSIONS: We conclude that pro-inflammatory TNF targets the quiescent/slow-cycling melanoma SC compartment and promotes PI3K/AKT-driven expansion of melanoma SCs most likely by preventing their asymmetrical self-renewal. This TNF effect is maintained and transferred to descendants of LRC CSCs and is manifested in the absence of TNF, suggesting that a transient exposure to inflammatory factors imprints long-lasting molecular and/or cellular changes with functional consequences long after inflammatory signal suppression. Clinically, these results may translate into an inflammation-triggered accumulation of quiescent/slow-cycling CSCs and a post-inflammatory onset of an aggressive tumor.


Assuntos
Melanoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Cutâneas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Fibroblastos , Humanos , Queratinócitos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pele/metabolismo
17.
PLoS One ; 9(6): e100760, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24971751

RESUMO

Tau is a microtubule-associated protein that aggregates in neurodegenerative disorders known as tauopathies. Recently, studies have suggested that Tau may be secreted and play a role in neural network signalling. However, once deregulated, secreted Tau may also participate in the spreading of Tau pathology in hierarchical pathways of neurodegeneration. The mechanisms underlying neuron-to-neuron Tau transfer are still unknown; given the known role of extra-cellular vesicles in cell-to-cell communication, we wondered whether these vesicles could carry secreted Tau. We found, among vesicles, that Tau is predominately secreted in ectosomes, which are plasma membrane-originating vesicles, and when it accumulates, the exosomal pathway is activated.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Proteínas tau/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Exossomos/metabolismo , Líquido Extracelular/metabolismo , Humanos , Microscopia Eletrônica , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Wistar
18.
Acta Neuropathol Commun ; 2: 14, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24479894

RESUMO

BACKGROUND: In sporadic Tauopathies, neurofibrillary degeneration (NFD) is characterised by the intraneuronal aggregation of wild-type Tau proteins. In the human brain, the hierarchical pathways of this neurodegeneration have been well established in Alzheimer's disease (AD) and other sporadic tauopathies such as argyrophilic grain disorder and progressive supranuclear palsy but the molecular and cellular mechanisms supporting this progression are yet not known. These pathways appear to be associated with the intercellular transmission of pathology, as recently suggested in Tau transgenic mice. However, these conclusions remain ill-defined due to a lack of toxicity data and difficulties associated with the use of mutant Tau. RESULTS: Using a lentiviral-mediated rat model of hippocampal NFD, we demonstrated that wild-type human Tau protein is axonally transferred from ventral hippocampus neurons to connected secondary neurons even at distant brain areas such as olfactory and limbic systems indicating a trans-synaptic protein transfer. Using different immunological tools to follow phospho-Tau species, it was clear that Tau pathology generated using mutated Tau remains near the IS whereas it spreads much further using the wild-type one. CONCLUSION: Taken together, these results support a novel mechanism for Tau protein transfer compared to previous reports based on transgenic models with mutant cDNA. It also demonstrates that mutant Tau proteins are not suitable for the development of experimental models helpful to validate therapeutic intervention interfering with Tau spreading.


Assuntos
Neurônios/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Encéfalo/patologia , Diferenciação Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Embrião de Mamíferos , Técnicas de Transferência de Genes , Humanos , Técnicas Analíticas Microfluídicas , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação/genética , Transporte Proteico/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
19.
Mol Ther ; 21(7): 1358-68, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23609018

RESUMO

Most models for tauopathy use a mutated form of the Tau gene, MAPT, that is found in frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) and that leads to rapid neurofibrillary degeneration (NFD). Use of a wild-type (WT) form of human Tau protein to model the aggregation and associated neurodegenerative processes of Tau in the mouse brain has thus far been unsuccessful. In the present study, we generated an original "sporadic tauopathy-like" model in the rat hippocampus, encoding six Tau isoforms as found in humans, using lentiviral vectors (LVs) for the delivery of a human WT Tau. The overexpression of human WT Tau in pyramidal neurons resulted in NFD, the morphological characteristics and kinetics of which reflected the slow and sporadic neurodegenerative processes observed in sporadic tauopathies, unlike the rapid neurodegenerative processes leading to cell death and ghost tangles triggered by the FTDP-17 mutant Tau P301L. This new model highlights differences in the molecular and cellular mechanisms underlying the pathological processes induced by WT and mutant Tau and suggests that preference should be given to animal models using WT Tau in the quest to understand sporadic tauopathies.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Lentivirus/genética , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Tauopatias/genética , Proteínas tau/genética
20.
Neurobiol Aging ; 34(3): 757-69, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22926167

RESUMO

A prerequisite to dephosphorylation at Ser-Pro or Thr-Pro motifs is the isomerization of the imidic peptide bond preceding the proline. The peptidyl-prolyl cis/trans isomerase named Pin1 catalyzes this mechanism. Through isomerization, Pin1 regulates the function of a growing number of targets including the microtubule-associated tau protein and is supposed to be deregulated Alzheimer's disease (AD). Using proteomics, we showed that Pin1 is posttranslationally modified on more than 5 residues, comprising phosphorylation, N-acetylation, and oxidation. Although Pin1 expression remained constant, Pin1 posttranslational two-dimensional pattern was modified by tau overexpression in a tau-inducible neuroblastoma cell line, in our THY-Tau22 mouse model of tauopathy as well as in AD. Interestingly, in all of these systems, Pin1 modifications were very similar. In AD brain tissue when compared with control, Pin1 is hyperphosphorylated at serine 16 and found in the most insoluble hyperphosphorylated tau fraction of AD brain tissue. Furthermore, in all tau pathology conditions, acetylation of Pin1 may also contribute to the differences observed. In conclusion, Pin1 displays several posttranslational modifications, which are specific in tauopathies and may be useful as biomarker.


Assuntos
Encéfalo/metabolismo , Peptidilprolil Isomerase/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Tauopatias/metabolismo , Proteínas tau/metabolismo , Acetilação , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Peptidilprolil Isomerase de Interação com NIMA , Oxirredução , Fosforilação/fisiologia , Prolina/metabolismo , Proteoma , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA